Applying artificial intelligence (AI) in procurement is not an overnight endeavor—it requires a systematic approach through four core steps. First, organizations must assess their digital maturity to identify current pain points and opportunities. Second, they must make informed decisions between buying off-the-shelf solutions and building custom systems. Third, targeted upskilling and change management are essential to equip teams to embrace new technologies. Finally, AI should be used to capture sustained financial value through improved data analytics and negotiation strategies. This article draws on industry-leading practices and cutting-edge research to unpack each step, helping procurement leaders navigate their AI transformation journey with confidence.
Digital Maturity Assessment
Before embarking on AI adoption, companies must conduct a comprehensive evaluation of their digital maturity to accurately locate both challenges and opportunities. AI maturity models provide a strategic roadmap for procurement leaders by assessing the current state of technological infrastructure, team capabilities, and process digitalization. These insights help define a realistic evolution path based on gaps and readiness.
McKinsey recommends a dual-track approach—rapidly deploying AI and analytics use cases that generate quick wins, while simultaneously building a scalable data platform to support long-term needs. Similarly, DNV’s AI maturity framework emphasizes benchmarking organizational vision against industry standards to help companies set priorities from a holistic perspective and avoid becoming isolated “technology islands.”
Technology: Buy or Build?
One of the most strategic decisions in implementing AI is choosing between purchasing ready-made solutions or building custom systems. Off-the-shelf solutions offer faster time-to-value, mature interfaces, and lower technical entry barriers—but they often fall short in addressing the unique nuances of procurement functions.
Conversely, organizations with greater AI ambitions may opt to build proprietary systems to achieve deeper control over spend transparency, contract optimization, and ESG goal alignment. However, this approach demands significant in-house capabilities in data engineering and algorithm development, along with careful consideration of long-term maintenance costs versus strategic benefits.
Forbes emphasizes that AI success hinges not only on the technology itself but also on factors such as user trust, ease of adoption, and alignment with long-term strategy—key dimensions that are frequently overlooked in the build-vs-buy debate. Additionally, the initial cost and future iteration expenses of AI solutions must be factored into decision-making to prevent unmanageable ROI gaps later on.
Upskilling the Team
AI doesn't just accelerate existing procurement processes—it redefines them. As such, upskilling procurement teams is paramount. According to BCG, only 10% of AI’s value comes from algorithms, 20% from data and platforms, and a staggering 70% from people adapting to new ways of working and being motivated to learn.
Economist Impact reports that 64% of enterprises have already adopted AI tools in procurement. This transformation requires current employees to gain proficiency in data analytics and decision support, while also bringing in new roles such as data scientists and AI engineers. Leaders must foster a culture of experimentation and continuous learning through robust change management and transparent communication to ensure skill development is fully realized.
The Hackett Group further notes that the most critical future skills for procurement professionals include advanced analytics, risk assessment, and cross-functional collaboration. These competencies will empower teams to excel in complex negotiations and supplier management. Supply Chain Management Review highlights that AI also democratizes learning for budget-constrained companies, enabling them to adopt and refine new technologies through hands-on experience.
Capturing Value from Suppliers
The ultimate goal of AI adoption in procurement is to translate technical capabilities into measurable business value—generating negotiation insights through advanced analytics, optimizing contract terms, and even encouraging suppliers to adopt generative AI to reduce total supply chain costs.
BCG’s research shows that a successful AI transformation can yield cost savings of 15% to 45% across select categories of products and services. The key lies in seamlessly integrating AI into procurement workflows and delivering an exceptional initial user experience to drive ongoing adoption and scalability. Sustained value capture also depends on strong executive commitment, regular KPI evaluation, and active promotion of success stories—ensuring that AI transformation becomes an enduring engine of enterprise growth.
Conclusion
In today’s hypercompetitive market landscape, AI-driven procurement transformation is no longer optional—it is essential. It offers a vital pathway to securing future competitive advantages and building core capabilities. At Hashitag, we are committed to guiding procurement teams through every stage of the transformation journey, from maturity assessment and technology decisions to workforce enablement and continuous value realization. We hope this four-step framework provides a clear roadmap for organizations to unlock the full potential of intelligent procurement and thrive in the digital era.
Related topic:
How to Get the Most Out of LLM-Driven Copilots in Your Workplace: An In-Depth Guide
Empowering Sustainable Business Strategies: Harnessing the Potential of LLM and GenAI in HaxiTAG ESG Solutions
The Application and Prospects of HaxiTAG AI Solutions in Digital Asset Compliance Management
HaxiTAG: Enhancing Enterprise Productivity with Intelligent Knowledge Management Solutions
Empowering Enterprise Sustainability with HaxiTAG ESG Solution and LLM & GenAI Technology
The Application of HaxiTAG AI in Intelligent Data Analysis
How HaxiTAG AI Enhances Enterprise Intelligent Knowledge Management
Effective PR and Content Marketing Strategies for Startups: Boosting Brand Visibility
Leveraging HaxiTAG AI for ESG Reporting and Sustainable Development